Poisson Distribution *IE231 - Lecture Notes 8 Nov 21, 2017*

Poisson distribution is widely used to represent occurences in an interval, mostly time but sometimes area. Examples include arrivals to queues in a day, number of breakdowns in a machine in a year, typos in a letter, oil reserve in a region.

Binomial Approximation to Poisson Distribution

We know from binomial distribution that *k* occurences in *n* trials with probability *p* has the following function.

$$
P\{X = k\} = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n!}{(n-k)!k!} p^k (1-p)^{n-k}
$$

and expected value is $E[X] = np$. Now define $\lambda = np$.

$$
P\{X = k\} = \frac{n!}{(n-k)!k!} \left(\frac{\lambda}{n}\right)^k \left(1 - \left(\frac{\lambda}{n}\right)\right)^{n-k}
$$

$$
= \frac{n(n-1)\dots(n-k+1)}{n^k} \left(\frac{\lambda^k}{k!}\right) \frac{(1-\frac{\lambda}{n})^n}{(1-\frac{\lambda}{n})^k}
$$

For very large *n* and very small *p* the resulting pdf becomes $\frac{\lambda^k e^{-\lambda}}{\lambda}$ $\frac{\epsilon}{k!}$.

Properties of Poisson Distribution

• PMF: $P\{X = k\} = \frac{\lambda^k e^{-\lambda}}{k!}$ *k*! • CDF: $P\{X \le k\} = \sum_{i=0}^{k}$ *λ i e* −*λ i*!

•
$$
E[X] = \lambda (due to \sum_{i=0}^{\infty} \frac{x^i}{i!} = e^x)
$$

•
$$
V(X) = \lambda
$$

Rate parameter λ can also be defined as λt , *t* being the scale parameter. For instance, let arrivals in 30 minutes interval be $\lambda t_{30} = 4$. If we would want to work on hourly intervals, we should simply rescale, $\lambda t_{60} = 8$.

Examples

Example 1

Suppose a machine has a probability of failure 0.001 per hour. What is the probability that the machine had failed at least three times within 2000 hours.

Binomial solution

$$
P\{X \ge 3\} = 1 - {2000 \choose 0} 0.001^0 0.999^{750} - {2000 \choose 1} 0.001^1 0.999^{749} - {2000 \choose 2} 0.001^2 0.999^{748}
$$

= 0.3233236

#R version

```
1- sum(dbinom(0:2,2000,0.001))
```
[1] 0.3233236

Poisson solution

$$
\lambda = np = 2000 * 0.001 = 2
$$

$$
P\{X \ge 3\} = 1 - \frac{e^{-2}2^{0}}{0!} - \frac{e^{-2}2^{1}}{1!} - \frac{e^{-2}2^{2}}{2!}
$$

$$
= 0.3233236
$$

#R version lambda=2000*****0.001 1**- sum**(**dpois**(0**:**2,lambda))

[1] 0.3233236

Example 2

People arrive at a bank with rate $\lambda = 5$ every 10 minutes. What is the probability that 10 people arrive in 30 minutes?

 $\lambda t_{10} = 5$

$$
\lambda' = \lambda t_{30} = 15
$$

$$
P\{X = 10, t = 30\} = \frac{e^{-15}15^{10}}{10!} = 0.049
$$

dpois(10,15)

[1] 0.04861075

Example 3

A machine breaks down with a poisson rate of $\lambda = 10$ per year. A new method is tried to reduce the failure rate to $\lambda = 3$, but there is a 50% chance that it won't work. If the method is tried and the machine fails only 3 times that year, what is the probability that the method worked on the machine?

$$
P\{Works|X=3\} = \frac{P\{WorksandX=3\}}{P\{X=3\}}
$$

 $P{W or ks} = 0.5$

 $P\{W or k, and X = 3\} = 0.5 * \frac{e^{-3}3^3}{8!}$ $\frac{6}{3!} = 0.1120209$

$$
P\{X=3\} = P\{WorksandX=3\} + P\{Doesn't WorkandX=3\} = 0.5 * \frac{e^{-3}3^3}{3!} + 0.5 * \frac{e^{-10}10^3}{3!}
$$

$$
= 0.96733
$$

```
#R codes
#Probability that it works
pw = 0.5
#Probability of 3 fails if lambda is 10
ppois10 = dpois(3,10)
#Probability of 3 fails if lambda is 3
ppois3 = dpois(3,3)
#P(Works | X = 3)
(pw*ppois3)/(pw*ppois3 + (1-pw)*ppois10)
```

```
## [1] 0.96733
```