
Sentiment Analysis on Twitter with R
IE231 - Lecture Notes 12

May 9, 2017

In this tutorial, we are going to search for tweets about Ethereum and do sentiment analysis using tidytext
package. First there is some menial work to get API keys from Twitter.

Setting Up Twitter and API keys

Step 0. If you do not have a Twitter account, create one.

Step 1.

Enter https://apps.twitter.com. Create a new app.

Fill the necessary information. You can ask for read and write permissions (but read is enough).

Step 2.

Find API keys in your application.

Also note the access token and secret.

Now that we got the necessary info, we can return to R. Just a word of caution. Twitter might block your
account due to “suspicious use” of your app. Though it is only temporary. You should write them a paragraph
explaining you are a student (if you are) and you are doing some experimental stuff (i.e. sentiment analysis)
using your own API and own account. They will reopen your account quickly. (Yes, Twitter has a lot to
improve.)

Warning! Never, ever write your API keys explicitly to a document.

Harnessing Twitter Information Using R

Setup

Start with loading required packages and setting up Twitter credentials.

Figure 1:

1

Figure 2:

Figure 3:

2

#Load required packages. Install before, if not installed.
#Package to get Tweets and lots of cool stuff
library(twitteR)
#Package to manipulate data sets
library(tidyverse)
#Package for text mining
library(tidytext)

the_api_key <- "<YOUR APPLICATION API KEY HERE>"
the_api_secret <- "<YOUR APPLICATION API SECRET HERE>"
the_access_token <- "<YOUR ACCESS KEY HERE>"
the_access_secret <- "<YOUR ACCESS SECRET HERE>"
#This function will set your Twitter session with the provided keys.
setup_twitter_oauth(

consumer_key=the_api_key,
consumer_secret=the_api_secret,
access_token=the_access_token,
access_secret=the_access_secret

)

Congratulations! You can now start getting tweets.

Searching for Ethereum

twitteR package provides us with a simple wrapper function to get tweets from Twitter Search. There are
other parameters (check ?searchTwitter) but we are going to use only some of them.

searchString is our query parameter. We are going to write “Ethereum” there to find results related to
Ethereum (it is quite a unique name, so no worries). We will also add -filter:retweets to remove RTs
from the results.

n is the number of results we desire. Remember, Twitter placed rate limits to its API. So, you might not get
100,000 tweets about the query. Though, you can put a number on retryOnRateLimit parameter to retry
the query. It takes time but eventually you will be building a tweet base.

lang is the language of Tweets, based on the account’s preferred language. We set it to “en” to get English
tweets.

With resultType, you can get “popular”, “recent” or “mixed” type tweets. Definition of popular comes from
Twitter.
ethereum_tweets <-

searchTwitter(
searchString="Ethereum -filter:retweets",
n=1000,
retryOnRateLimit=120,
lang="en",
resultType="mixed",

)

Let’s see the results. Needless to say, you will get different results from Twitter since the time of your query
is different.
print(head(ethereum_tweets))

[[1]]

3

[1] "coindesk: Ethereum has provided details on how a major change called proof-of-stake will be deployed on the network https://t.co/xoAwZPMZAv"
##
[[2]]
[1] "Excellion: Agree with Luke. Plus no one should listen to Vitalik's advice on hard-forks. Ethereum is 100% dependent on hard-fo... https://t.co/24iDAmhi9q"
##
[[3]]
[1] "Excellion: Yep. #oldjeffgarzik was smart. The new Garzik needs to sell Ethereum though, so we must think critically about what... https://t.co/FQyUye5ety"
##
[[4]]
[1] "StakepoolCom: 'Ethereum' article is now on main stream and media in Korea Check it out! https://t.co/v4da77hyqB #cryptocurrency #steem #blockchain"
##
[[5]]
[1] "MurphyAnalyst: #ethereum is in an upward momentum right now, making new highs almost everyday."
##
[[6]]
[1] "BlockChannel: nickjohnson: Can you link to the transaction hash? https://t.co/vlPajmAtf0"

The output is a different object format (similar to list). Let’s peek at the structure of the object.
print(str(ethereum_tweets[[1]]))

Reference class 'status' [package "twitteR"] with 17 fields
$ text : chr "Ethereum has provided details on how a major change called proof-of-stake will be deployed on the network https://t.co/xoAwZPMZ"| __truncated__
$ favorited : logi FALSE
$ favoriteCount: num 75
$ replyToSN : chr(0)
$ created : POSIXct[1:1], format: "2017-05-06 15:00:06"
$ truncated : logi FALSE
$ replyToSID : chr(0)
$ id : chr "860871802364579841"
$ replyToUID : chr(0)
$ statusSource : chr "Buffer"
$ screenName : chr "coindesk"
$ retweetCount : num 57
$ isRetweet : logi FALSE
$ retweeted : logi FALSE
$ longitude : chr(0)
$ latitude : chr(0)
$ urls :'data.frame': 1 obs. of 5 variables:
..$ url : chr "https://t.co/xoAwZPMZAv"
..$ expanded_url: chr "http://www.coindesk.com/ethereums-big-switch-the-new-roadmap-to-proof-of-stake/"
..$ display_url : chr "coindesk.com/ethereums-big-..."
..$ start_index : num 106
..$ stop_index : num 129
and 53 methods, of which 39 are possibly relevant:
getCreated, getFavoriteCount, getFavorited, getId, getIsRetweet,
getLatitude, getLongitude, getReplyToSID, getReplyToSN, getReplyToUID,
getRetweetCount, getRetweeted, getRetweeters, getRetweets,
getScreenName, getStatusSource, getText, getTruncated, getUrls,
initialize, setCreated, setFavoriteCount, setFavorited, setId,
setIsRetweet, setLatitude, setLongitude, setReplyToSID, setReplyToSN,
setReplyToUID, setRetweetCount, setRetweeted, setScreenName,
setStatusSource, setText, setTruncated, setUrls, toDataFrame,
toDataFrame#twitterObj
NULL

4

Now we need only text for this tutorial. There is a base R function for that sapply.
#Get only text from the objects
eth_text <- sapply(ethereum_tweets, "[[", "text")
head(eth_text)

[1] "Ethereum has provided details on how a major change called proof-of-stake will be deployed on the network https://t.co/xoAwZPMZAv"
[2] "Agree with Luke. Plus no one should listen to Vitalik's advice on hard-forks. Ethereum is 100% dependent on hard-fo... https://t.co/24iDAmhi9q"
[3] "Yep. #oldjeffgarzik was smart. The new Garzik needs to sell Ethereum though, so we must think critically about what... https://t.co/FQyUye5ety"
[4] "'Ethereum' article is now on main stream and media in Korea Check it out! https://t.co/v4da77hyqB #cryptocurrency #steem #blockchain"
[5] "#ethereum is in an upward momentum right now, making new highs almost everyday."
[6] "nickjohnson: Can you link to the transaction hash? https://t.co/vlPajmAtf0"

Congratulations! You just got tweets from Twitter into an R vector.

Text Mining

Now we are going to combine the powers of two packages tidyverse and tidytext to easily do sentiment
analysis. You can also check some of the references here (1,2,3).

We are going to get the tweets from our tweet vector. We will also need to do some operations on the text to
remove links, some special characters in order to get proper words and meanings. In this tutorial we are just
going to work on single words, not n-grams (i.e. multi word phrases that may contain extra meaning).
eth_words <-
#Create a tibble (kind of data frame)
tibble(tweet=eth_text) %>%

#Remove all links, RT, ampersand and some other special characters.
mutate(tweet = stringr::str_replace_all(tweet,

"https://t.co/[A-Za-z\\d]+|http://[A-Za-z\\d]+|&|<|>|RT|https|\'|\"",
"")) %>%

#Separate each tweet into words
#Keep hashtags(#) and (@) since they are special character to Twitter
#Never mind the regex, it is always complicated
unnest_tokens(word,tweet,

token="regex",
pattern="([^A-Za-z_\\d#@']|'(?![A-Za-z_\\d#@]))") %>%

#Remove stop words such as; and, or, before, after etc.
anti_join(stop_words,by="word") %>%
#Remove numbers
filter(stringr::str_detect(word, "[a-z]"))

Let’s see the words with the highest frequency in tweets.
eth_words %>%

count(word,sort=TRUE) %>%
print(n=25)

A tibble: 1,722 × 2
word n
<chr> <int>
1 ethereum 532
2 #ethereum 411
3 #bitcoin 215
4 bitcoin 159
5 #blockchain 141

5

http://tidytextmining.com
http://tidyverse.org/
http://pushpullfork.com/2017/02/mining-twitter-data-tidy-text-tags/

6 price 125
7 ether 89
8 usd 82
9 #eth 81
10 enterprise 76
11 eth 74
12 free 68
13 markets 68
14 blockchain 65
15 correct 62
16 violently 62
17 wipro 62
18 joins 57
19 alliance 56
20 #cryptocurrency 53
21 time 36
22 change 33
23 video 33
24 token 32
25 classic 31
... with 1,697 more rows

Word Clouds

It is quite easy to create word clouds in R using the wordcloud package. Let’s see the words, hashtags and
users with the highest frequency.
#Install wordcloud if not installed
library(wordcloud)

#Plot the wordcloud with text only
eth_words %>%

filter(!grepl("\\#|@",word)) %>%
count(word,sort=TRUE) %>%
with(wordcloud(word, n, max.words = 100))

rotator
markets

mixer
change

1h

historic

minutesmark

giant

sm
ar

t live

ris
es

token

zcoin

bt
c

ripplem
in

in
g

ethereum

hi
ts

technomint
grade

low
coindesk

music

cryptocurrency

million

develop

pl
at

fo
rm

trades
alliance

analysis
freedom

innogy
minute

sharing

switch

so
lu

tio
ns

run

free

ca
p

cr
yp

to
co

in
sn

ew
s

dont

video
internet

bitcoin

passes

stake crossed

charges

violentlysetfuture

buy

guide

ether

monetization

enterprise

price

wipro transform

eth

blockchain

usd

hi
st

or
yjoin

co
rr

ec
t

dapp

proof

service

time

decreased

car

dailynickjohnson

contract

news

xbt

joins

classic

people

litecoin

in
di

an

founding

ethereums

week

crowdsale

decentralized

korea

south

index

da
sh

fleet

ranking

ico

online

electric

marketcrypto

restore

mins

6

#Plot the wordcloud of hashtags
eth_words %>%

filter(grepl("\\#",word)) %>%
count(word,sort=TRUE) %>%
with(wordcloud(word, n, max.words = 100))

#monero
#altcoins

#volatility

#steem

#b
lo

ck
ch

ai
n

#starbaseco
#goepolitical

#dash

#btc

#music
#usa

#ct_index
#litecoin

#defstar5

#panama
#zcash

#etc
#moneyback

#crypto

#france

#sonm

#tech

#n
ow

pl
ay

in
g

#holland

#mining

#blockchain101
#bitcoin

#cryptocurrencies

#china

#ico

#crowdfunding
#bitcoins #altcoin

#cryptocurrency

#electriccar

#eth

#ethereum

#ether

#f
in

te
ch#moskow

#news

#startup

#Plot the wordcloud of user references
eth_words %>%

filter(grepl("@",word)) %>%
count(word,sort=TRUE) %>%
with(wordcloud(word, n, max.words = 100))

@rverbee
@bitcoinbelle

@johnlilic

@cryptocoinsnews

@c0nvey
@simondlr

@jamie247
@leashless

@weifund

@cointelegraph

@
co

in
de

sk

@bitcoinmagazine

@youtube

@thomaspower
@linkplatform

@ethereumproject

@innogy

Getting Sentiments

tidytext package contains three types of “sentiment dictionaries”; afinn, bing or nrc. Each word is
associated with one or more sentiments. bing dictionary gives us positive/negative sentiments, afinn a scale
between -5 and 5, and nrc provides more emotions such as anger, joy, fear etc. It is also possible to get
loughran sentiment data set for finance specific sentiment analysis, but that version of the package is not on
CRAN yet. See this post to learn how to load it.

We are going to use bing dictionary to get binary positive/negative results. See an example portion below.

7

http://stackoverflow.com/questions/43282771/loading-loughran-finance-sentiment-into-tidytext

get_sentiments("bing") %>% sample_n(10)

A tibble: 10 × 2
word sentiment
<chr> <chr>
1 exuberantly positive
2 conflict negative
3 peeved negative
4 unraveled negative
5 stagnation negative
6 fondness positive
7 disgustingly negative
8 reforming positive
9 downer negative
10 mangling negative

We are going to associate eth_words with the sentiments data sets. There will be words without sentiments,
so they will be removed from the data set.
#Get the sentiments
eth_bing_sentiments <-
eth_words %>%

count(word,sort=TRUE) %>%
inner_join(.,get_sentiments("bing"),by="word")

#See the data
print(eth_bing_sentiments)

A tibble: 140 × 3
word n sentiment
<chr> <int> <chr>
1 free 68 positive
2 correct 62 positive
3 violently 62 negative
4 classic 31 positive
5 freedom 15 positive
6 smart 12 positive
7 massacre 9 negative
8 led 8 positive
9 celebrated 6 positive
10 threat 6 negative
... with 130 more rows
#Get the proportion of positive/negativeness
eth_bing_sentiments %>%

group_by(sentiment) %>%
summarise(occurence=sum(n)) %>%
ungroup() %>%
mutate(share=round(occurence/sum(occurence),2))

A tibble: 2 × 3
sentiment occurence share
<chr> <int> <dbl>
1 negative 156 0.33
2 positive 321 0.67

8

It seems two-thirds of words in tweets contain positive sentiments about Ethereum.

Let’s also put a wordcloud on sentiments. You will need reshape2 package for this.
#install.packages(reshape2)
#Get the word cloud
eth_bing_sentiments %>%

reshape2::acast(word ~ sentiment, value.var = "n", fill = 0) %>%
comparison.cloud(colors = c("#F8766D", "#00BFC4"),

max.words = 100)

negative

positive

violently
free

co
rr

ec
t

classic

massacre

fr
ee

do
m

threat

smart

attack

led

breaking
bug

dead

dirty
loss

wrong

celebrated

support

bad
break

broken
hard

limit
limited

panic

passive

risks
sloooow

gold

amazing

benefits

bonus

comprehensive

easy
gain

guarantee

ni
cenicely

worth

bankrupt
breakdown
breakscrash

dark

death difficulty

disappointeddownturn

dumb

evil
excessive

fall

frustrated

fucking

hack

hedge hell
hype

impossible

issue

lo
se

lost

maniac

mistaken

shit

silly

struggles

struggling
suffersurrender

terror

untested volatile

warned

warning

cool

exceed
excellent

fast

golden

happy
healthy

impress

nicer
positive

recovery
top

win

winner
wow

accessible

beautiful

easier
love

reliably
smartest

stellar

strong

successful
unlimited

Final words

Now that you are familiar with Twitter API and sentiment analysis you can use and implement it in your
predictions, models and reports. For instance, it might be an indicator of Buy if the positive sentiment is
above a threshold and Sell if it is below. Advanced measures such as getting tweets from a curated list of
users or using Loughran sentiment dictionary are also recommended.

9

	Setting Up Twitter and API keys
	Step 1.
	Step 2.

	Harnessing Twitter Information Using R
	Setup
	Searching for Ethereum
	Text Mining
	Word Clouds
	Getting Sentiments

	Final words

