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In this tutorial, we are going to search for tweets about Ethereum and do sentiment analysis using tidytext
package. First there is some menial work to get API keys from Twitter.

Setting Up Twitter and API keys

Step 0. If you do not have a Twitter account, create one.

Step 1.

Enter https://apps.twitter.com. Create a new app.

Fill the necessary information. You can ask for read and write permissions (but read is enough).

Step 2.

Find API keys in your application.

Also note the access token and secret.

Now that we got the necessary info, we can return to R. Just a word of caution. Twitter might block your
account due to “suspicious use” of your app. Though it is only temporary. You should write them a paragraph
explaining you are a student (if you are) and you are doing some experimental stuff (i.e. sentiment analysis)
using your own API and own account. They will reopen your account quickly. (Yes, Twitter has a lot to
improve.)

Warning! Never, ever write your API keys explicitly to a document.

Harnessing Twitter Information Using R

Setup

Start with loading required packages and setting up Twitter credentials.
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#Load required packages. Install before, if not installed.
#Package to get Tweets and lots of cool stuff
library(twitteR)
#Package to manipulate data sets
library(tidyverse)
#Package for text mining
library(tidytext)

the_api_key <- "<YOUR APPLICATION API KEY HERE>"
the_api_secret <- "<YOUR APPLICATION API SECRET HERE>"
the_access_token <- "<YOUR ACCESS KEY HERE>"
the_access_secret <- "<YOUR ACCESS SECRET HERE>"
#This function will set your Twitter session with the provided keys.
setup_twitter_oauth(

consumer_key=the_api_key,
consumer_secret=the_api_secret,
access_token=the_access_token,
access_secret=the_access_secret

)

Congratulations! You can now start getting tweets.

Searching for Ethereum

twitteR package provides us with a simple wrapper function to get tweets from Twitter Search. There are
other parameters (check ?searchTwitter) but we are going to use only some of them.

searchString is our query parameter. We are going to write “Ethereum” there to find results related to
Ethereum (it is quite a unique name, so no worries). We will also add -filter:retweets to remove RTs
from the results.

n is the number of results we desire. Remember, Twitter placed rate limits to its API. So, you might not get
100,000 tweets about the query. Though, you can put a number on retryOnRateLimit parameter to retry
the query. It takes time but eventually you will be building a tweet base.

lang is the language of Tweets, based on the account’s preferred language. We set it to “en” to get English
tweets.

With resultType, you can get “popular”, “recent” or “mixed” type tweets. Definition of popular comes from
Twitter.
ethereum_tweets <-

searchTwitter(
searchString="Ethereum -filter:retweets",
n=1000,
retryOnRateLimit=120,
lang="en",
resultType="mixed",

)

Let’s see the results. Needless to say, you will get different results from Twitter since the time of your query
is different.
print(head(ethereum_tweets))

## [[1]]
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## [1] "coindesk: Ethereum has provided details on how a major change called proof-of-stake will be deployed on the network https://t.co/xoAwZPMZAv"
##
## [[2]]
## [1] "Excellion: Agree with Luke. Plus no one should listen to Vitalik's advice on hard-forks. Ethereum is 100% dependent on hard-fo... https://t.co/24iDAmhi9q"
##
## [[3]]
## [1] "Excellion: Yep. #oldjeffgarzik was smart. The new Garzik needs to sell Ethereum though, so we must think critically about what... https://t.co/FQyUye5ety"
##
## [[4]]
## [1] "StakepoolCom: 'Ethereum' article is now on main stream and media in Korea Check it out! https://t.co/v4da77hyqB #cryptocurrency #steem #blockchain"
##
## [[5]]
## [1] "MurphyAnalyst: #ethereum is in an upward momentum right now, making new highs almost everyday."
##
## [[6]]
## [1] "BlockChannel: nickjohnson: Can you link to the transaction hash? https://t.co/vlPajmAtf0"

The output is a different object format (similar to list). Let’s peek at the structure of the object.
print(str(ethereum_tweets[[1]]))

## Reference class 'status' [package "twitteR"] with 17 fields
## $ text : chr "Ethereum has provided details on how a major change called proof-of-stake will be deployed on the network https://t.co/xoAwZPMZ"| __truncated__
## $ favorited : logi FALSE
## $ favoriteCount: num 75
## $ replyToSN : chr(0)
## $ created : POSIXct[1:1], format: "2017-05-06 15:00:06"
## $ truncated : logi FALSE
## $ replyToSID : chr(0)
## $ id : chr "860871802364579841"
## $ replyToUID : chr(0)
## $ statusSource : chr "<a href=\"http://bufferapp.com\" rel=\"nofollow\">Buffer</a>"
## $ screenName : chr "coindesk"
## $ retweetCount : num 57
## $ isRetweet : logi FALSE
## $ retweeted : logi FALSE
## $ longitude : chr(0)
## $ latitude : chr(0)
## $ urls :'data.frame': 1 obs. of 5 variables:
## ..$ url : chr "https://t.co/xoAwZPMZAv"
## ..$ expanded_url: chr "http://www.coindesk.com/ethereums-big-switch-the-new-roadmap-to-proof-of-stake/"
## ..$ display_url : chr "coindesk.com/ethereums-big-..."
## ..$ start_index : num 106
## ..$ stop_index : num 129
## and 53 methods, of which 39 are possibly relevant:
## getCreated, getFavoriteCount, getFavorited, getId, getIsRetweet,
## getLatitude, getLongitude, getReplyToSID, getReplyToSN, getReplyToUID,
## getRetweetCount, getRetweeted, getRetweeters, getRetweets,
## getScreenName, getStatusSource, getText, getTruncated, getUrls,
## initialize, setCreated, setFavoriteCount, setFavorited, setId,
## setIsRetweet, setLatitude, setLongitude, setReplyToSID, setReplyToSN,
## setReplyToUID, setRetweetCount, setRetweeted, setScreenName,
## setStatusSource, setText, setTruncated, setUrls, toDataFrame,
## toDataFrame#twitterObj
## NULL
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Now we need only text for this tutorial. There is a base R function for that sapply.
#Get only text from the objects
eth_text <- sapply(ethereum_tweets, "[[", "text")
head(eth_text)

## [1] "Ethereum has provided details on how a major change called proof-of-stake will be deployed on the network https://t.co/xoAwZPMZAv"
## [2] "Agree with Luke. Plus no one should listen to Vitalik's advice on hard-forks. Ethereum is 100% dependent on hard-fo... https://t.co/24iDAmhi9q"
## [3] "Yep. #oldjeffgarzik was smart. The new Garzik needs to sell Ethereum though, so we must think critically about what... https://t.co/FQyUye5ety"
## [4] "'Ethereum' article is now on main stream and media in Korea Check it out! https://t.co/v4da77hyqB #cryptocurrency #steem #blockchain"
## [5] "#ethereum is in an upward momentum right now, making new highs almost everyday."
## [6] "nickjohnson: Can you link to the transaction hash? https://t.co/vlPajmAtf0"

Congratulations! You just got tweets from Twitter into an R vector.

Text Mining

Now we are going to combine the powers of two packages tidyverse and tidytext to easily do sentiment
analysis. You can also check some of the references here (1,2,3).

We are going to get the tweets from our tweet vector. We will also need to do some operations on the text to
remove links, some special characters in order to get proper words and meanings. In this tutorial we are just
going to work on single words, not n-grams (i.e. multi word phrases that may contain extra meaning).
eth_words <-
#Create a tibble (kind of data frame)
tibble(tweet=eth_text) %>%

#Remove all links, RT, ampersand and some other special characters.
mutate(tweet = stringr::str_replace_all(tweet,

"https://t.co/[A-Za-z\\d]+|http://[A-Za-z\\d]+|&amp;|&lt;|&gt;|RT|https|\'|\"",
"")) %>%

#Separate each tweet into words
#Keep hashtags(#) and (@) since they are special character to Twitter
#Never mind the regex, it is always complicated
unnest_tokens(word,tweet,

token="regex",
pattern="([^A-Za-z_\\d#@']|'(?![A-Za-z_\\d#@]))") %>%

#Remove stop words such as; and, or, before, after etc.
anti_join(stop_words,by="word") %>%
#Remove numbers
filter(stringr::str_detect(word, "[a-z]"))

Let’s see the words with the highest frequency in tweets.
eth_words %>%

count(word,sort=TRUE) %>%
print(n=25)

## # A tibble: 1,722 × 2
## word n
## <chr> <int>
## 1 ethereum 532
## 2 #ethereum 411
## 3 #bitcoin 215
## 4 bitcoin 159
## 5 #blockchain 141
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## 6 price 125
## 7 ether 89
## 8 usd 82
## 9 #eth 81
## 10 enterprise 76
## 11 eth 74
## 12 free 68
## 13 markets 68
## 14 blockchain 65
## 15 correct 62
## 16 violently 62
## 17 wipro 62
## 18 joins 57
## 19 alliance 56
## 20 #cryptocurrency 53
## 21 time 36
## 22 change 33
## 23 video 33
## 24 token 32
## 25 classic 31
## # ... with 1,697 more rows

Word Clouds

It is quite easy to create word clouds in R using the wordcloud package. Let’s see the words, hashtags and
users with the highest frequency.
#Install wordcloud if not installed
library(wordcloud)

#Plot the wordcloud with text only
eth_words %>%

filter(!grepl("\\#|@",word)) %>%
count(word,sort=TRUE) %>%
with(wordcloud(word, n, max.words = 100))
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#Plot the wordcloud of hashtags
eth_words %>%

filter(grepl("\\#",word)) %>%
count(word,sort=TRUE) %>%
with(wordcloud(word, n, max.words = 100))
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#Plot the wordcloud of user references
eth_words %>%

filter(grepl("@",word)) %>%
count(word,sort=TRUE) %>%
with(wordcloud(word, n, max.words = 100))
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Getting Sentiments

tidytext package contains three types of “sentiment dictionaries”; afinn, bing or nrc. Each word is
associated with one or more sentiments. bing dictionary gives us positive/negative sentiments, afinn a scale
between -5 and 5, and nrc provides more emotions such as anger, joy, fear etc. It is also possible to get
loughran sentiment data set for finance specific sentiment analysis, but that version of the package is not on
CRAN yet. See this post to learn how to load it.

We are going to use bing dictionary to get binary positive/negative results. See an example portion below.
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get_sentiments("bing") %>% sample_n(10)

## # A tibble: 10 × 2
## word sentiment
## <chr> <chr>
## 1 exuberantly positive
## 2 conflict negative
## 3 peeved negative
## 4 unraveled negative
## 5 stagnation negative
## 6 fondness positive
## 7 disgustingly negative
## 8 reforming positive
## 9 downer negative
## 10 mangling negative

We are going to associate eth_words with the sentiments data sets. There will be words without sentiments,
so they will be removed from the data set.
#Get the sentiments
eth_bing_sentiments <-
eth_words %>%

count(word,sort=TRUE) %>%
inner_join(.,get_sentiments("bing"),by="word")

#See the data
print(eth_bing_sentiments)

## # A tibble: 140 × 3
## word n sentiment
## <chr> <int> <chr>
## 1 free 68 positive
## 2 correct 62 positive
## 3 violently 62 negative
## 4 classic 31 positive
## 5 freedom 15 positive
## 6 smart 12 positive
## 7 massacre 9 negative
## 8 led 8 positive
## 9 celebrated 6 positive
## 10 threat 6 negative
## # ... with 130 more rows
#Get the proportion of positive/negativeness
eth_bing_sentiments %>%

group_by(sentiment) %>%
summarise(occurence=sum(n)) %>%
ungroup() %>%
mutate(share=round(occurence/sum(occurence),2))

## # A tibble: 2 × 3
## sentiment occurence share
## <chr> <int> <dbl>
## 1 negative 156 0.33
## 2 positive 321 0.67
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It seems two-thirds of words in tweets contain positive sentiments about Ethereum.

Let’s also put a wordcloud on sentiments. You will need reshape2 package for this.
#install.packages(reshape2)
#Get the word cloud
eth_bing_sentiments %>%

reshape2::acast(word ~ sentiment, value.var = "n", fill = 0) %>%
comparison.cloud(colors = c("#F8766D", "#00BFC4"),

max.words = 100)
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Final words

Now that you are familiar with Twitter API and sentiment analysis you can use and implement it in your
predictions, models and reports. For instance, it might be an indicator of Buy if the positive sentiment is
above a threshold and Sell if it is below. Advanced measures such as getting tweets from a curated list of
users or using Loughran sentiment dictionary are also recommended.
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